Context Management Patterns
Proven patterns for managing AI context effectively across different use cases.
Dr. Emily Watson
December 5, 2025
8 min read
<h2>The Layered Context Pattern</h2>
<p>Structure your context in layers, from general to specific:</p>
<ol>
<li><strong>Global layer</strong> - Universal preferences (communication style, formatting)</li>
<li><strong>Domain layer</strong> - Industry or field-specific knowledge</li>
<li><strong>Project layer</strong> - Project-specific requirements and constraints</li>
<li><strong>Task layer</strong> - Immediate task context</li>
</ol>
<h2>The Progressive Disclosure Pattern</h2>
<p>Don't overwhelm the AI with context. Start minimal and add more as needed:</p>
<pre><code>Initial prompt: Basic task + essential constraints
Follow-up: Add specific requirements as the conversation develops
Deep dive: Include detailed specifications when working on complex features</code></pre>
<h2>The Reference Pattern</h2>
<p>Instead of repeating context, reference established patterns:</p>
<pre><code>"Follow our standard error handling pattern as defined in the project memories"</code></pre>
<h2>Anti-Patterns to Avoid</h2>
<ul>
<li><strong>Context dumping</strong> - Including all possible context regardless of relevance</li>
<li><strong>Stale context</strong> - Using outdated information that contradicts current reality</li>
<li><strong>Conflicting instructions</strong> - Multiple memories that contradict each other</li>
</ul>